Multi-Output Prediction Model for Basic Oxygen Furnace Steelmaking Based on the Fusion of Deep Convolution and Attention Mechanisms

Author:

Dong Qianqian1,Li Min1,Hu Shuaijie1,Yu Yan2,Gu Maoqiang2

Affiliation:

1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Central Research Institute, Baoshan Iron and Steel Co., Ltd., Shanghai 201900, China

Abstract

The objective of basic oxygen furnace (BOF) steelmaking is to achieve molten steel with final carbon content, temperature, and phosphorus content meeting the requirements. Accurate prediction of the above properties is crucial for end-point control in BOF steelmaking. Traditional prediction models typically use multi-variable input and single-variable output approaches, neglecting the coupling relationships between different property indicators, making it difficult to predict multiple outputs simultaneously. Consequently, a multi-output prediction model based on the fusion of deep convolution and attention mechanism networks (FDCAN) is proposed. The model inputs include scalar data, such as the properties of raw materials and target molten steel, and time series data, such as lance height, oxygen supply intensity, and bottom air supply intensity during the blowing process. The FDCAN model utilizes a fully connected module to extract nonlinear features from scalar data and a deep convolution module to process time series data, capturing high-dimensional feature representations. The attention mechanism then assigns greater weight to significant features. Finally, multiple multi-layer perceptron modules predict the outputs—final carbon content, temperature, and phosphorus content. This structure allows FDCAN to learn complex relationships within the input data and between input and output variables. The effectiveness of the FDCAN model is validated using actual BOF steelmaking data, achieving hit rates of 95.14% for final carbon content within ±0.015 wt%, 84.72% for final temperature within ±15 °C, and 88.89% for final phosphorus content within ±0.005 wt%.

Funder

the 5G+ Smart Steel Industry Application Research Funding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3