Electrical and Optical Characterisation of Silicon Nanocrystals Embedded in SiC
-
Published:2013-10
Issue:
Volume:205-206
Page:480-485
-
ISSN:1662-9779
-
Container-title:Solid State Phenomena
-
language:
-
Short-container-title:SSP
Author:
Schnabel Manuel1, Löper Philipp1, Canino Mariaconcetta2, Dyakov Sergey A.3, Allegrezza Marco2, Bellettato Michele2, López-Vidrier Julià4, Hernández Sergi4, Summonte Caterina2, Garrido Blas4, Wilshaw Peter R.5, Janz Stefan1
Affiliation:
1. Fraunhofer-Institute for Solar Energy Systems 2. CNR-IMM sez. di Bologna 3. Trinity College Dublin 4. Universitat de Barcelona 5. Oxford University
Abstract
Silicon nanocrystals (Si NCs) are a promising candidate for the top cell of an all-Si tandem solar cell with a band gap from 1.3-1.7 eV, tuneable by adjusting NC size. They are readily produced within a Si-based dielectric matrix by precipitation from the Si excess in multilayers of alternating stoichiometric and silicon-rich layers. Here we examined the luminescence and transport of Si NCs embedded in SiC. We observed luminescence that redshifts from 2.0 to 1.5 eV with increasing nominal NC size. Upon further investigation, we found that this redshift is to a large extent due to Fabry-Pérot interference. Correction for this effect allows an analysis of the spectrum emitted from within the sample. We also produced p-i-n solar cells and found that the observed I-V curves under illumination could be well-fitted by typical thin-film solar cell models including finite series and parallel resistances, and a voltage-dependent current collection function. A minority carrier mobility-lifetime product on the order of 10-10 cm2/V was deduced, and a maximum open-circuit voltage of 370 mV achieved.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Reference14 articles.
1. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach, Applied Physics Letters, 80 (2002) 661-663. 2. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 57 (1990) 1046-1048. 3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals, Nature, 408 (2000) 440-444. 4. P. Löper, D. Stüwe, M. Künle, M. Bivour, C. Reichel, R. Neubauer, M. Schnabel, M. Hermle, O. Eibl, S. Janz, M. Zacharias, S.W. Glunz, A membrane device for substrate-free photovoltaic characterization of quantum dot based p-i-n solar cells, Advanced Materials, 24 (2012). 5. M. Canino, C. Summonte, M. Allegrezza, R. Shukla, I.P. Jain, M. Bellettato, A. Desalvo, F. Mancarella, M. Sanmartin, A. Terrasi, P. Löper, M. Schnabel, S. Janz, Identification and tackling of a parasitic surface compound in SiC and Si-rich carbide films, Materials Science and Engineering: B.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|