BEOL Post-Etch Clean Robustness Improvement with Ultra-Diluted Hf for 28nm Node

Author:

Broussous Lucile1,Fabre Remy1,Massin Thomas1,Ishikawa Hiwadezu2,Buisine Fabrice2,Lamaury Alain2

Affiliation:

1. STMicroelectronics

2. SCREEN SPE Germany GmbH

Abstract

For 28 nm and beyond, severe specifications in terms of dimensions and materials integrity still drive further cleaning process improvements. As the global “HF budget” drastically decreases with interconnections dimensions, HF solution dilution and process time both decreased stepwise. However, very short recipes with process time shorter than 15s start to suffer from lack of robustness, in particular for the monitoring of inline parameters such as flow-rates and temperature. In this paper, we highlighted that a first matching of silicon oxide consumption was usefull to select temperature and concentration range for the diluted HF solution. High dilution ratio, and “room temperature” (20 °C) were then selected. Variations in cleaning efficiency were analyzed as regard with electrical defects density at three metals levels, then the use of 0.025 %wt. HF, 20 °C, 40 s. was pointed out as the more promising solution for process of record replacement. Process robustness, i.e. inline monitoring data collection and uniformity on wafer should thus be improved thanks to this longer process time and a lower process temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3