Prediction and Analysis of Building Energy Efficiency Using Artificial Neural Network and Design of Experiments

Author:

Sholahudin 1,Alam Azimil Gani1,Baek Chang In2,Han Hwataik1

Affiliation:

1. Kookmin University

2. Suwon Science College

Abstract

Energy consumption of buildings is increasing steadily and occupying approximately 30-40% of total energy use. It is important to predict heating and cooling loads of a building in the initial stage of design to find out optimal solutions among various design options, as well as in the operating stage after the building has been completed for energy efficient operation. In this paper, an artificial neural network model has been developed to predict heating and cooling loads of a building based on simulation data for building energy performance. The input variables include relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution of a building, and the output variables include heating load (HL) and cooling load (CL) of the building. The simulation data used for training are the data published in the literature for various 768 residential buildings. ANNs have a merit in estimating output values for given input values satisfactorily, but it has a limitation in acquiring the effects of input variables individually. In order to analyze the effects of the variables, we used a method for design of experiment and conducted ANOVA analysis. The sensitivities of individual variables have been investigated and the most energy efficient solution has been estimated under given conditions. Discussions are included in the paper regarding the variables affecting heating load and cooling load significantly and the effects on heating and cooling loads of residential buildings.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3