Affiliation:
1. Imperial College London
2. Rolls-Royce PLC
Abstract
During operation mechanical structures can experience large vibration amplitudes. One of the challenges encountered in gas-turbine blade design is avoiding high-cycle fatigue failure usually caused by large resonance stresses driven by aeroelastic excitation. A common approach to control the amplitude levels relies on increasing friction damping by incorporating underplatform dampers (UPD). An accurate prediction of the dynamics of a blade-damper system is quite challenging, due to the highly nonlinear nature of the friction interfaces and detailed validation is required to ensure that a good modelling approach is selected. To support the validation process, a newly developed experimental damper rig will be presented, based on a set of newly introduced non-dimensional parameters that ensure a similar dynamic behaviour of the test rig to a real turbine blade-damper system. An ini-
tial experimental investigation highlighted the sensitivity of the measured response with regards to settling and running in of the damper, and further measurements identified a strong dependence of the nonlinear behaviour to localised damper motion. Numerical simulations of the damper rig with a simple macroslip damper model were performed during the preliminary design, and a comparison to the measured data highlighted the ability of the basic implicit model to capture the resonance frequencies of the system accuratelyю
Publisher
Trans Tech Publications, Ltd.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献