Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification

Author:

Lu Sheng-Hao,Han Jing-Yu,Yan Shao-Ze

Abstract

Micro sliding phenomenon widely exists in the operation process of mechanical systems, and the micro sliding friction mechanism is always a research hotspot. In this work, based on the total reflection method, a measuring device for interface contact behavior under two-dimensional (2D) vibration is built. The stress distribution is characterized by the light intensity distribution of the contact image, and the interface contact behavior in the 2D vibration process is studied. It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient, the tangential stiffness, and the fluctuation amplitude of the stress distribution. Then they will affect the change of friction state and energy dissipation in the process of micro sliding. Further, an improved micro sliding friction model is proposed based on the experimental analysis, with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account. This model considers the interface tangential stiffness fluctuation, friction coefficient hysteresis, and stress distribution fluctuation, whose simulation results are consistent well with the experimental results. It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior. Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3