Electrical Properties of Carbon Nanotubes Cement Composites for Monitoring Stress Conditions in Concrete Structures

Author:

Coppola Luigi1,Buoso Alessandra1,Corazza Fabio2

Affiliation:

1. University of Bergamo

2. CTG – Italcementi Group

Abstract

Cement pastes reinforced with Multi-Walled carbon NanoTubes (MWNTs) are smart materials with piezoresistivity properties. Adding carbon nanotubes to the cement matrix, in fact, the electrical resistivity of cementitious composites changes with the stress conditions under static and dynamic loads. This particular behaviour can be used to evaluate the stress level in reinforced concrete structures, to monitor the traffic flow, to weigh vehicles. In this paper data on pressure-sensitive behaviour under compressive stress of cement pastes and mortars containing different percentages (from 0.0% to 1.0% vs. cement mass) of MWNTs are presented.In order to form a conductive network and enhancethe piezoresistive properties of cementitious mixtures, Carbon NanoTubes (CNTs) need to be efficiently dispersed in the cement matrix. Two different methods to disperse CNTsin the cement matrix were used. The first one uses a surfactant (Sodium Linear Alkyl Benzene Sulphonate - LAS): MWNTs were dispersed in a LAS aqueous solution,and thenmixed with cement and a defoamer (tributyl phosphate) to decrease the air bubble in MWNT filled cement-based composites. The second method consists in mixing CNTs with about 50% of the mixing water in a becker by means of a glass wand. Then, the solution is sonicated by an ultrasonic generator for 10 minutes. Finally, the sonicatedCNT-aqueous solution ismixed with cement (and sand for the mortars). The piezoresistivity properties of the cementitious mixtures manufactured with the two above mentioned CNTs dispersing methods will be compared.Experimental results show that the electrical resistance changes synchronously with the compressive stress levelsfor the specimens manufactured with both methods. Therefore, CNTs improve the pressure-sensitivity of cementitious composites. Moreover, the piezoresistive response is better for cementitious composites manufactured by using the surfactant agent to disperse CNTs. Data indicate that – thanks to the better dispersion of nanotubes promoted by the surfactant - the pressure-sensitivity properties of cement pastes can be achieved even by using a very low percentage of CNTS (0.1% vs. cement mass). These findings seem to indicate that self-sensing CNTs/cement composite can be produced. These smart materials have great potential and they could be used in the next future in concrete field for practical applications to monitor the stress level of reinforced concrete elements subjected to static, dynamic and impact loads. In particular, informations on actual stress existing under dynamic and impact loads could be improve design procedures in protective structures.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. S. Iijima: Nature Vol. 354 (1991), p.56–58.

2. Wagner, H.D. et al., Stress-induced fragmentation of multi-walled carbon nanotubes in a polymer matrix, ApplPhysLett, 1998; 72(2): 188-90.

3. G. Y. Li, P. M. Wang, X. Zhao: Carbon 43 (2005), p.1239–1245.

4. G. Y. Li, P. M. Wang, X. Zhao: Cement&Concrete Composites 29 (2007), pp.377-382.

5. L. Coppola, E. Borgarello, A. Buoso, F. Corazza, E. Crippa, Proceedings of the 1st Workshop Le nuove frontiere del calcestruzzo strutturale – The new boundaries of structural concrete, ACI ItalyChapter (Salerno, 2010), pp.299-306.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3