Electrostatic self-assembly effect of Fe3O4 nanoparticles on performance of carbon nanotubes in cement-based materials

Author:

Wang Linghui1,Ge Zhi2,Zhang Ning1,Feng Yujie2,Ling Yifeng2,Zhang Hongzhi2

Affiliation:

1. Shandong Hi-speed Group Co. Ltd , Jinan , 250002, Shandong Province , China

2. School of Qilu Transportation, Shandong University , Jinan , 250002, Shandong Province , China

Abstract

Abstract The beneficial effect of carbon nanotubes (CNTs) to enhance the electrical conductivity and piezoresistivity of cement-based materials was highly contingent upon its dispersion. To achieve an appropriate dispersion of CNTs, ultrasonication, high-speed stirring, and chemical dispersion were commonly used, which raises the risk of structural damage of CNTs caused by the excessive energy. In this study, electrostatic self-assembly of Fe3O4 nanoparticles on CNTs was employed to efficiently disperse CNTs. To optimize the dispersion effect of conductive fillers in cement paste, the mix proportions including sodium dodecyl sulfate (SDS) concentration, CNTs concentration, and Fe3O4/CNTs ratios were adjusted. The dispersion degree and electrical property were evaluated by UV–vis absorption and zeta potential. In addition, the effect of self-assembled conductive filler dosage on the electrically conductive property of cement pastes was examined. The results show that the occurrence of electrostatic self-assembly was proved by the change of zeta potential, and the grape-bunch structure was observed by transmission electron microscopy. Further, the optimal proportions of self-assembled conductive fillers were 0.20 wt% SDS concentration, 0.05 wt% CNTs concentration, and 1:1 Fe3O4/CNTs ratio. The self-assembled conductive filler dosage between 0.02 and 0.10 wt% can effectively improve the electrical conductivity of cement paste with up to 68% reduction of resistivity.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3