Comparative Wear Resistance of Existing and Prospective Materials of Fast-Wearing Elements of Mining Equipment

Author:

Bolobov Victor I.1,Chupin Stanislav A.1,Akhmerov Erik V.1,Plaschinskiy Vyacheslav A.1

Affiliation:

1. Saint Petersburg Mining University

Abstract

The results of tests for resistance to abrasive wear on highly abrasive hard rock white electrocorundum are presented. The main material of fast-wearing elements of mining and processing equipment-110G13L steel (Gadfield steel) in comparison with other 9 grades of steel and cast iron, including specially developed wear-resistant foreign steels such as Hardox and Miiluks, is analyzed. The studies were carried out using an experimental stand for studying the material wearing process. On the stand the sample was fixed in a holding device and, after being brought into contact with the abrasive, it was rotated under a constant load. As a result of the experiments, it was confirmed that the order of placement of the tested materials in terms of increasing wear resistance coincides with their placement in terms of increasing hardness. At the same time, the wear resistance of the most resistant material – U8A steel after quenching – is about 4 times higher than this indicator for the least resistant components – low-carbon steel 25L, including gray and high-strength cast iron SCH21, VCH35. The wear resistance of 110G13L steel, as well as 65G, U8 steels in the hardened state, is from 1.5 to 2 times higher than that of foreign steels M400, H450, M500, H500. The results of the conducted studies allow us to evaluate the analyzed materials on the basis of their wear resistance and hardness indicators on the feasibility of using them in the manufacture of fast-wearing parts of mining equipment. Based on the research data, it seems promising to develop new ways to increase the wear resistance of domestic steel, including 110G13L steel traditionally used in mining.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3