Affiliation:
1. GRINM Group Co., LTD.
2. Northeast light alloy Co., Ltd.
Abstract
Effect of multi-section linear non-uniform heat transfer coefficient on quenching residual stress distribution in 27mm-thick Al-Zn-Mg-Cu aluminum alloy plate was simulation studied by using the finite element method, and the surface quenching residual stress distribution was measured by the X-ray diffraction method and hole-drilling method. The results show that the surface quenching residual stress represents the same distribution with non-uniform heat transfer coefficient in the transverse direction and the stress level maintains initial stress level of the heat transfer coefficient at each location. The distribution of the quenching residual stress in the center of the plate is approximately uniform and the stress level is approximately equal to average of maximum and minimum initial stress level. The measured surface quenching residual stress shows a wavy distribution in the transverse direction, which is similar to the simulated surface stress distribution without considering the stress level. The measurement results can be explained by the multi-section linear non-uniform quenching model.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献