Multi-Class Grain Size Model for Forged Alloy 718 Aircraft Parts

Author:

Gruber Christian1,Raninger Peter1,Stockinger Martin2,Bucher Christian3

Affiliation:

1. Materials Center Leoben Forschung GmbH

2. Montanuniversität Leoben

3. Voestalpine BÖHLER Aerospace GmbH & Co KG

Abstract

The evolution of microstructural features such as local grain size and local grain size distribution are essential in view of the final physical and mechanical properties of the nickel base alloy 718 for aircraft parts forged in a multi-step production route. Due to increasing standards and the need of the prediction of fracture mechanical properties, a multi-class grain size model for a more detailed microstructure prediction is necessary. Therefore, a multi-class model considers the real initial non-uniform grain size distribution and structure of the pre-material at the beginning of the forging process, which affects the evolution of grain sizes during thermo-mechanical treatment and leads to different results than commonly used uniform grain structures. The initial distribution is defined by grain classes according the ASTM standard. It is shown that the presence of different classes and distributions of grains are as import as the applied strain, strain rate and temperature on dynamic, meta-dynamic and static recrystallization. Additionally, dissolution processes of delta phase and grain growth kinetics are included in the model to properly indicate the recrystallized fractions and represent the resulting multi-class microstructure. A series of simulations with different initial distributions is discussed and compared with examined forged samples in terms of the resulting microstructure for typical forging parameters. Based on these results the microstructure model can be used in combination with collected process data to predict the resulting properties and for the design of new aircraft parts.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3