The Key Role of Laser Ultrasonics in the Context of Sustainable Production in an I 4.0 Value Chain

Author:

Hartl KarinORCID,Sorger MarcelORCID,Stockinger Martin

Abstract

The advancement of laser ultrasonics has increased rapidly in recent years, providing applications for materials characterization as well as for industrial utilization, as a quality control device. The wide-ranging capabilities for high-temperature in-situ analysis of a variety of microstructural characteristics offers a multitude of possibilities for usage in R&D. To date, this is the only known method that has been successfully deployed for in-situ materials characterization, as well as in the harsh environment of the metalworking industry. Combined with the enablers, introduced by the fourth industrial revolution, and the conjunction of a laser ultrasonic system with a Smart Production Lab, it has great potential to contribute to lower rejection rates, better recyclability, and consequently to a more sustainable production. In this review, the potential for systemic sustainability is explained throughout a part of the value chain, in the context of Industry 4.0. In addition, the integration of the methodology into a miniaturized Smart Production Lab is demonstrated, with the intention of incorporating it as a substantial part of the creation of a digital twin. Such a lab is designed to serve as an interface between laboratory and industry, in order to reveal the possibilities of digital transformation, Industry 4.0, and the application of highly flexible systems such as the laser-ultrasonic system for companies.

Funder

Austrian Promotion Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3