Autonomous Interpretation of the Microstructure of Steels and Special Alloys

Author:

Mulewicz Bartłomiej1ORCID,Korpala Grzegorz2,Kusiak Jan3,Prahl Ulrich2

Affiliation:

1. AGH University of Science and Technology, Kraków, Poland

2. Technische Universität Bergakademie Freiberg

3. AGH University of Science and Technology

Abstract

The main objective of presented research is an attempt of application of techniques taken from a dynamically developing field of image analysis based on Artificial Intelligence, particularly on Deep Learning, in classification of steel microstructures. Our research focused on developing and implementation of Deep Convolutional Neural Networks (DCNN) for classification of different types of steel microstructure photographs received from the light microscopy at the TU Bergakademie, Freiberg. First, brief presentation of the idea of the system based on DCNN is given. Next, the results of tests of developed classification system on 8 different types (classes) of microstructure of the following different steel grades: C15, C45, C60, C80, V33, X70 and carbide free steel. The DCNN based classification systems require numerous training data and the system accuracy strongly depend on the size of these data. Therefore, created data set of numerous micrograph images of different types of microstructure (33283 photographs) gave the opportunity to develop high precision classification systems and segmentation routines, reaching the accuracy of 99.8%. Presented results confirm, that DCNN can be a useful tool in microstructure classification.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3