A Novel Deformation Prediction Model for Mine Slope Surface Using Meteorological Factors Based on Kernel Extreme Learning Machine

Author:

Du Sun Wen1,Zhang Jin1,Deng Zeng Bing2,Li Jing Tao2

Affiliation:

1. Taiyuan University of Technology

2. China Coal Pingshuo Group Co., Ltd.

Abstract

Extreme learning machine (ELM), as an emergent technique for training feed-forward neural networks, has shown good performance on various learning domains. This work evaluates the effectiveness of a new Gaussian kernel function-based extreme learning machine (KELM) algorithm for the deformation prediction of mine slope surface utilizing various kinds of meteorological influence factor data including the temperature, atmospheric pressure, cumulative rainfall, relative humidity and refractive index of the mining slope. The KELM model was applied to the deformation of Anjialing diggings, which is an open-pit mine of the China Coal PingShuo Group Co., Ltd. in China. The prediction performance on real data suggests that the proposed KELM model can effectively express the non-linear relationship between the mine open-pit slope surface deformation and various kinds of meteorological influence factors. The prediction results are compared with the most widely used algorithms – Support vector machine (SVM) and back-propagation neural networks (BP NN) in terms of the ease of use ( for example, the number of user-defined parameters), regression accuracy and computation cost. The comparison shows that the new algorithm is similar to SVM and BP NN but more accurate, and has notable lower computational cost and stronger generalization ability.

Publisher

Trans Tech Publications, Ltd.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3