A novel deformation forecasting method utilizing comprehensive observation data

Author:

Du Sunwen1ORCID,Li Yao2

Affiliation:

1. College of Mining Technology, Taiyuan University of Technology, Taiyuan, P.R. China

2. College of History and culture, Shanxi University, Taiyuan, P.R. China

Abstract

Mine disasters often happen unpredictably and it is necessary to find an effective deformation forecasting method. A model between deformation data and the factors data that affected deformation is built in this study. The factors contain hydro-geological factors and meteorological factors. Their relationship presents a complex nonlinear relationship which cannot be solved by ordinary methods such as multiple linear regression. With the development of artificial intelligence algorithm, Artificial Neural Network, Support Vector Machine, and Extreme Learning Machine come to the fore. Support Vector Machine could establish a deformation prediction model perfectly in the condition that there is less input data and output data. The deformation forecast model that uses quantum-behaved particle swarm optimization algorithm is selected to optimize the Support Vector Machine. The optimum configuration of Support Vector Machine model needs to be determined by two parameters, that is, normalized mean square error and correlation coefficient (R). Quantum-behaved particle swarm optimization could determine the optimal parameter values by minimizing normalized mean square error. It investigates the application effect of the proposed quantum-behaved particle swarm optimization–Support Vector Machine model by comparing their performances of popular forecasting models, such as Support Vector Machine, GA-Support Vector Machine, and particle swarm optimization–Support Vector Machine models. The results show that the proposed model has better performances in mine slope surface deformation and is superior to its rivals.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3