Study on Thermal and Structural Behavior of a Cable-Stayed Bridge under Potential Tanker Truck Fires

Author:

Liu Yong Jun1,Ning Bo1,Wang Yu1

Affiliation:

1. Shenyang Jianzhu University

Abstract

Bridges are important parts of traffic systems and need to provide the necessary safety for the traveling public. Fire is one of the most severe hazards that bridges may subject to during their lifetime. In recent years, due to rapid development of transportation systems, as well as increasing transport of hazardous materials, bridge fires have become a concern. Bridge fires caused by crashing of vehicles and burning of gasoline are much more severe than building fires and are characterized by a fast heating rate and a higher peak temperature which could lead to bridge collapse. Bridge failures during a fire can result in the disruption of commerce and services, and most importantly the loss of human life. It has become necessary to consider the potential exposure of bridges to flames from oil or liquefied petroleum gas fires. In this paper, potential fire scenarios relevant for a cable-stayed bridge crossing the Yangtze River are analyzed firstly, then the temperature distribution in key elements and the global structural behavior of the bridge under tanker truck fires is calculated by using general purpose finite element analysis software ANSYS. Numerical simulation results demonstrate that cable-stayed bridge may collapse under some specific fire scenarios and it is necessary to consider fire safety in bridge design.

Publisher

Trans Tech Publications, Ltd.

Reference4 articles.

1. M. Garlock, I. Paya-Zaforteza, V. Kodur, L. Gu, Engineering Structures, 35 (2012) 89-98.

2. J. Choi, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, (2008).

3. Y. Jia, Thesis for Mater Degree, North University of China, Taiyuan, (2010).

4. T.T. Lie, B. Celikkol, ACI Material Journal, 88 (1991) 84-91.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3