Variable Condition Bearing Fault Diagnosis Based on Time-Domain and Artificial Intelligence

Author:

Hu Qing Zhong1,Zhang Shu Lei1,Yang Sheng1

Affiliation:

1. Xichang Satellite Launch Center

Abstract

Aim at some problem in fault diagnose: the characteristic frequency depends on the speed, the spectrum is complex , which are easy to diagnose error when in the variable conditions, and it is often difficult to identify the fault positioning in the frequency domain. the paper puts forward a new method: Variable condition bearing fault diagnosis basing on time-domain and artificial intelligence , not depend on speed and frequency domain. This method use vibration signal, calculates the kurtosis, skewness, rms etc 12 time-domain value, then these character vectors are sent to the neural network classifier to complete fault type pattern recognition, Finally, the same faults are sent to the next neural network for fault positioning and damage extent identification. The experimental result showed that using this method can obtain very good effect.

Publisher

Trans Tech Publications, Ltd.

Reference4 articles.

1. D. Bently,Predictive maintenance through the monitoring and diagnostics of rolling element bearings[R]. Bently Nevada Co,Application Note,1989,44,2-8.

2. C.T. Yiakopoulos et al. ,Rolling element bearing fault detection in industrial environments based on a K-means clustering approach,Expert Systems with Applications 38 (2011) 2888–2911.

3. Arai M. Mapping abilities of three-layered neural networks. Proc. of IJCNN, Seattle, USA, 1991. 419~423.

4. Loparo K.A. Bearings vibration data set. Case Western Reserve University. .

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3