Fault Diagnosis for Rotating Machinery Based on Convolutional Neural Network and Empirical Mode Decomposition

Author:

Xie Yuan1ORCID,Zhang Tao1ORCID

Affiliation:

1. Department of Automation, School of Information Science and Technology, Tsinghua University, Beijing, China

Abstract

The analysis of vibration signals has been a very important technique for fault diagnosis and health management of rotating machinery. Classic fault diagnosis methods are mainly based on traditional signal features such as mean value, standard derivation, and kurtosis. Signals still contain abundant information which we did not fully take advantage of. In this paper, a new approach is proposed for rotating machinery fault diagnosis with feature extraction algorithm based on empirical mode decomposition (EMD) and convolutional neural network (CNN) techniques. The fundamental purpose of our newly proposed approach is to extract distinguishing features. Frequency spectrum of the signal obtained through fast Fourier transform process is trained in a designed CNN structure to extract compressed features with spatial information. To solve the nonstationary characteristic, we also apply EMD technique to the original vibration signals. EMD energy entropy is calculated using the first few intrinsic mode functions (IMFs) which contain more energy. With features extracted from both methods combined, classification models are trained for diagnosis. We carried out experiments with vibration data of 52 different categories under different machine conditions to test the validity of the approach, and the results indicate it is more accurate and reliable than previous approaches.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3