Damage Evolution in Structural Steel at Different Loading Conditions

Author:

Al-Himairee Reem Majeed1,Abed Farid Hamid1,Al-Tamimi Adil K.1

Affiliation:

1. American University of Sharjah

Abstract

This paper presents an experimental and numerical characterization of ductile damage evolution in steel subjected to large plastic deformations. The main objective of this research is to better understand damage initiation and evolution in structural steel throughout the deformation process at different strain rates. The proposed study relies on a continuum damage mechanics approach that involves characteristic parameters to describe the accumulation of plastic strain, the damage variable, and the strain rates. The work was divided into experimental, and simulation phases. The experimental phase involved testing under monotonic uniaxial tensile loading under varying strain rates. The obtained material parameters are then used as the basic data in the simulations that are performed afterwards. Finally, this model was implemented as a new user defined material in the finite element analysis software ABAQUS where damage was quantified. Initial results of this research showed that a simple model with substantial cost and time saving can be developed for damage assessment in steel. The rate of loading is a main sensitive parameter that affects both damage initiation and propagation, as they increased significantly with increasing loading rate. Beyond the ultimate load, the strain energy was sufficient to cause the damage to increase without any further applied load.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3