Flow Stress and Damage Behavior of C45 Steel Over a Range of Temperatures and Loading Rates

Author:

Abed Farid H.1,Saffarini Mohammad H.2,Abdul-Latif Akrum3,Voyiadjis George Z.4

Affiliation:

1. Department of Civil Engineering, American University of Sharjah, SHJ 26666, United Arab Emirates e-mail:

2. Department of Civil Engineering, American University of Sharjah, SHJ 26666, United Arab Emirates

3. Département GIM 3 rue de la Râperie, Université Paris 8 IUT de Tremblay-en-France, Tremblay-en-France, France

4. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70802

Abstract

This research aims to describe the behavior of C45 steel and provide better understanding of the thermomechanical ductile failure that occurs due to accumulation of microcracks and voids along with plastic deformation to enable proper structural design, and hence provide better serviceability. A series of quasi-static tensile tests are conducted on C45 steel at a range of temperatures between 298 K and 923 K for strain rates up to 0.15 s−1. Drop hammer dynamic tests are also performed considering different masses and heights to study the material response at higher strain rates. Scanning electron microscopy (SEM) images are taken to quantify the density of microcracks and voids of each fractured specimens, which are needed to define the evolution of internal defects using an energy-based damage model. The coupling effect of damage and plasticity is incorporated to accurately define the constitutive relation that can simulate the different structural responses of this material. Good correlation was observed between the proposed model predictions and experiments particularly at regions where dynamic strain aging (DSA) is not present.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3