Sintering of Mechanically Activated Powders

Author:

Sreckovic Tatjana1

Affiliation:

1. University of Belgrade

Abstract

Mechanical activation (MA) is used extensively as a relatively no expensive method for the modification of physico-chemical properties of dispersed systems in technologies for obtaining powders and ceramics. Different processes that occur during MA of powders lead to the formation of specific structures that promote and accelerate solid-state reactions, as well as densification during sintering. Changes of particle size and structure during MA of the ceramic parent material are the sources of the morphological and structural metastability of the starting powders and they can affect the sintering process, positively or negatively. Many properties of final polycrystalline ceramics strongly depend on a green body microstructure and on conditions under which the green body is sintered. From the other side green body microstructure depend on a powders characteristics such as morphology, particle and pore size distributions. Regarding above mentioned activation and sintering must therefore be carried out under strictly controlled conditions in order to avoid influences that might cause a deterioration of the final properties of the ceramic materials. The present study is focused on the processes of sintering that occurred in mechanically activated single and multiphase oxide powders.

Publisher

Trans Tech Publications Ltd

Reference24 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Powder Metallurgy Production of Ti-2 Wt Pct Si Alloy: Structural, Mechanical, and Electrochemical Characterization of the Sintered Material;Metallurgical and Materials Transactions A;2020-10-04

2. The Effect of Mechanochemical on The Formation of Calcium Titanate (CaTiO3) Prepared by High Energy Milling;IOP Conference Series: Materials Science and Engineering;2020-09-01

3. Mechanical Treatment of ZrB2–SiC Powders and Sintered Ceramic Composites Properties;Proceedings of the Scientific-Practical Conference "Research and Development - 2016";2017-12-05

4. The influence of ZrB2-SiC powders mechanical treatment on the structure of sintered ceramic composites;IOP Conference Series: Materials Science and Engineering;2016-07

5. Advanced ceramics in the SnO2–ZnO binary system;Ceramics International;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3