Infrared Light Absorption and Emissivity of Silicon Microstructured by Femtosecond Laser in SF6

Author:

Li Yuan1,Feng Guo Jin2,Zhao Li1

Affiliation:

1. Fudan University

2. National Institute of Metrology

Abstract

The surface microstructured silicon prepared by femtosecond laser pulses irradiation in SF6shows significantly enhanced light absorption over a wide wavelength range. Absorptance of microstructured silicon is measured from 2 to 16μm, and the absorptance can up to 0.8 in the measured wavelength range. The absorptance of microstructured silicon increases as the height of spikes increases. Emissivity of microstructured silicon at different temperatures(100°C-400°C) is measured from 2.5μm to 25μm. Greatly enhanced emissivity compared to that of flat silicon was observed. At a certain temperature, with increasing the height of the spikes, the emissivity increases. For a sample with 13–14μm high spikes, the emissivity at a temperature of 100°C is approximately 0.96. A tentative explanation for the high absorptance of microstructured silicon has been carried out from three aspects: impurity states, structure defects and multiple reflection of light between spikes. The excellent properties of microstructured silicon make it a promising candidate for applications of infrared detectors, silicon solar cells, flat blackbody source and so on.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3