Compressed Domain Computationally Efficient Processing Scheme for JPEG Image Filtering

Author:

Florea Camelia1,Gordan Mihaela1,Orza Bogdan1,Vlaicu Aurel1

Affiliation:

1. Technical University of Cluj-Napoca

Abstract

Image filtering is one of the principal tools used in computer vision applications. Real systems store and manipulate high resolution images in compressed forms, therefore the implementation of the entire processing chain directly in the compressed domain became essential. This includes almost always linear filtering operations implemented by convolution. Linear image filtering implementation directly on the JPEG images is challenging for several reasons, including the complexity of transposing the pixel level convolution in the compressed domain, which may increase the processing time, despite avoiding the decompression. In this paper we propose a new computationally efficient solution for JPEG image filtering (as a spatial convolution between the input image and a given kernel) directly in the DCT based compressed domain. We propose that the convolution operation to be applied just on the periodical extensions of the DCT basis images, as an off-line processing, obtaining the filtered DCT basis images, which are used in data decompression. While this doesn't solve the near block boundaries filtering artefacts for large convolution kernels, for most practical cases, it provides good quality results at a very low computational complexity. These kind of implementations can run at real-time rates/ speeds and are suitable for developments of applications on digital cameras/ DSP/FPGA.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3