Few-Shot Learning for Plant-Disease Recognition in the Frequency Domain

Author:

Lin HongORCID,Tse Rita,Tang Su-KitORCID,Qiang ZhenpingORCID,Pau GiovanniORCID

Abstract

Few-shot learning (FSL) is suitable for plant-disease recognition due to the shortage of data. However, the limitations of feature representation and the demanding generalization requirements are still pressing issues that need to be addressed. The recent studies reveal that the frequency representation contains rich patterns for image understanding. Given that most existing studies based on image classification have been conducted in the spatial domain, we introduce frequency representation into the FSL paradigm for plant-disease recognition. A discrete cosine transform module is designed for converting RGB color images to the frequency domain, and a learning-based frequency selection method is proposed to select informative frequencies. As a post-processing of feature vectors, a Gaussian-like calibration module is proposed to improve the generalization by aligning a skewed distribution with a Gaussian-like distribution. The two modules can be independent components ported to other networks. Extensive experiments are carried out to explore the configurations of the two modules. Our results show that the performance is much better in the frequency domain than in the spatial domain, and the Gaussian-like calibrator further improves the performance. The disease identification of the same plant and the cross-domain problem, which are critical to bring FSL to agricultural industry, are the research directions in the future.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference50 articles.

1. Plant Disease: A Threat to Global Food Security

2. Deep learning in agriculture: A survey

3. Generalizing from a Few Examples

4. Siamese neural networks for one-shot image recognition;Koch;Proceedings of the ICML Deep Learning Workshop,2015

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3