Role of Atomic Transport Kinetic on Nano-Film Solid State Growth

Author:

Portavoce Alain1,Hoummada Khalid2

Affiliation:

1. CNRS

2. Aix-Marseille Université

Abstract

Nanostructures used to build current technology devices are generally based on the stack of several thin films (from few nanometer-thick to micrometer-thick layers) having different physical properties (conductors, semiconductors, dielectrics, etc.). In order to build such devices, thin film fabrication processes compatible with the entire device fabrication need to be developed (each subsequent process step should not deteriorate the previous construction). Solid-state reactive diffusion allows thin film exhibiting good interfacial properties (mechanical, electrical…) to be produced. In this case, the film of interest is grown from the reaction of an initial layer with the substrate on which it has been deposited, during controlled thermal annealing. In the case of the reaction of a nano-layer (thickness < 100 nm) with a semi-infinite substrate, nanoscale effects can be observed: i) the phases appear sequentially, ii) not all the thermodynamic stable phases appear in the sequence (some phases are missing), and iii) some phases are transient (they disappear as fast as they appear). The understanding of the driving forces controlling such nanoscale effects is highly desired in order to control the phase formation sequence, and to stabilize the phase of interest (for the targeted application) among all the phases appearing in the sequence.This chapter presents recent investigations concerning the influence of atomic transport on the nanoscale phenomena observed during nano-film reactive diffusion. The results suggest that nano-film solid-state reaction could be controlled by modifying atomic transport kinetics, allowing current processes based on thin-film reactive diffusion to be improved.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3