The Research of the Rolling Element Bearing Fault Signal Frequency Domain Feature Extraction Method Based on the Wavelet Packet Decomposition

Author:

Qiu Shi Yin1,Yuan Rui Bo1

Affiliation:

1. Kunming University of Science and Technology

Abstract

The wavelet packet decomposition can be used to extract the frequency band containing bearing fault feature, because the fault signal can be decomposed into different frequency bands by using the wavelet packet decomposition, that is to say the optimal wavelet packet decomposition node needs to be found. A method applying the average Euclidean distance to find the optimal wavelet packet decomposition node was presented. First of all, the bearing fault signals were decomposed into three layers wavelet coefficients by which the bearing fault signals were reconstructed. The peak values extracted from the reconstructing signal spectrum constructed a feature space. Then, the minimum average Euclidean distance calculated from the feature space indicated the optimal wavelet packet node. The optimal feature space could be constructed by the feature points extracted from the signals reconstructed by the optimal wavelet packet nodes. Finally, the optimal feature space was used for the K-means clustering. The feature extraction and pattern recognition test of the four kinds of bearing conditions under four kinds of rotation speeds was detailed. The test results show this method, which can extract the bearing fault feature efficiently and make the fault feature space have the lowest within-class scatter, wons a high pattern recognition accuracy.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3