New Composite Metal Foams under Compressive Cyclic Loadings
-
Published:2007-03
Issue:
Volume:539-543
Page:1868-1873
-
ISSN:1662-9752
-
Container-title:Materials Science Forum
-
language:
-
Short-container-title:MSF
Author:
Rabiei Afsaneh1, Neville Brian1, Reese Nick1, Vendra Lakshmi1
Affiliation:
1. North Carolina State University
Abstract
New composite metal foams are processed using powder metallurgy (PM) and gravity casting techniques. The foam is comprised of steel hollow spheres, with the interstitial spaces occupied by a solid metal matrix (Al or steel alloys). The cyclic compression loading of the products of both techniques has shown that the composite metal foams have high cyclic stability at very high maximum stress levels up to 68 MPa. Under cyclic loading, unlike other metal foams, the composite metal foams do not experience rapid strain accumulation within collapse bands and instead, a uniform distribution of deformation happen through the entire sample until the densification strain is reached. This is a result of more uniform cell structure in composite metal foams compared to other metal foams. As a result, the features controlling the fatigue life of the composite metal foams have been considered as sphere wall thickness and diameter, sphere and matrix materials, and processing techniques as well as bonding strength between the spheres and matrix.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference16 articles.
1. Sugimura, Y., Rabiei, A., Evans, A. G., Harte, A. M., and Fleck, N. A., Compression fatigue of a cellular Al alloy, Materials Science and Engineering A, 269, 38-48, (1999). 2. Harte, A. M., Fleck, N. A., and Ashby, M. F., Fatigue failure of an open cell and a closed cell aluminium alloy foam, Acta Materialia, 47, 2511-2524, (1999). 3. Zettl, B., Mayer, H., Stanzl-Tschegg, S. E., and Degischer, H. P., Fatigue properties of aluminium foams at high numbers of cycles, Materials Science and Engineering A, 292, 1-7, (2000). 4. Motz, C., Friedl, O., and Pippan, R., Fatigue crack propagation in cellular metals, International Journal of Fatigue, 27, 1571-1581, (2005). 5. Rabiei, A., Evans, A. G., and Hutchinson, J. W., Heat Generation during the Fatigue of a Cellular Al Alloy, Metallurgical and Materials Transactions A, 31A, 1129-1136, (2000).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|