Structural and Thermal Properties of Hot Pressed Cu/C Matrix Composites Materials Used for the Thermal Management of High Power Electronic Devices

Author:

Geffroy Pierre Marie1,Silvain Jean François2

Affiliation:

1. Université de Limoges

2. Université Bordeaux I

Abstract

In order to obtain materials for electronic applications that exhibit both excellent thermal conductivity and low coefficient of thermal expansion (CTE), copper matrix composites have been reinforced by short high modulus graphite fibers. The lack of fiber/matrix interaction prevents any degradation of the carbon reinforcement during the elaboration steps and the normal use of these materials. Elaboration conditions, such as mixing conditions of the short carbon fibers and the copper powder, dimension and shape of the two powders, and finally densification atmosphere, temperature, pressure and time, have been optimized. Main parameters involved in the thermal properties of the Cu/C composite materials have been analyzed and adjusted. CTE is mainly related with the carbon volume fraction; CTE ranging from 9 to 13 10-6/°C can be reproductively obtained with carbon volume fraction ranging from 50% to 20%. Thermal conductivity properties are more complex and are linked mainly with 1) the porosity level inside the material, and 2) the orientation, properties and volume fraction of the carbon fibers. For short carbon fibers, in plane thermal conductivity ranging from 200 to 550 W/mK have been reproductively measured associated with thermal conductivity through-thickness ranging from 150 to 300 W/mK.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Al-Si controlled expansion alloys for electronic packaging applications;Progress in Materials Science;2024-08

2. Microstructure and thermal properties of copper matrix composites reinforced by 3D carbon fiber networks;Composites Communications;2023-12

3. Structural, electronic and optical properties of BaTiO3-CoFe2O4 nanocomposites for optoelectronic devices;Materials Science and Engineering: B;2023-10

4. High-Temperature Interaction between Carbon Fibers and Cu–Ag Eutectic Alloy;International Journal of Self-Propagating High-Temperature Synthesis;2022-12

5. Interaction of Cu Melt with Graphite Fibers;International Journal of Self-Propagating High-Temperature Synthesis;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3