Analytical Solutions of the Boltzmann Transformation Equation

Author:

Okino T.1,Shimozaki T.2,Fukuda R.1,Cho Hiroki1

Affiliation:

1. Oita University

2. Kyushu Institute of Technology

Abstract

The so-called continuity equation derived by Fick is one of the most fundamental and extremely important equations in physics and/or in materials science. As is well known, this partial differential equation is also called the diffusion equation or the heat conduction equation and is applicable to physical phenomena of the conservation system. Incorporating the parabolic law relevant to a random movement into it, Boltzmann obtained the ordinary differential equation (B-equation). Matano then applied the B-equation to the analysis of the nonlinear problem for the interdiffusion experiment. The empirical Boltzmann-Matano (B-M) method has been successful in the metallurgical field. However, the nonlinear B-equation was not mathematically solved for a long time. Recently, the analytical solutions of the B-equation were obtained in accordance with the results of the B-M method. In the present study, an applicable limitation of the B-equation to the interdiffusion problems is investigated from a mathematical point of view.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3