Boltzmann transformation of radial two-phase black oil model for tight oil reservoirs

Author:

Prempeh Kofi Ohemeng Kyei,Parker-Lamptey George,Martin HenryORCID,Amoako-Yirenkyi Peter

Abstract

AbstractTight oil accumulates in impermeable reservoir rocks, often shale or tight sandstones. The flow behaviour of tight oil in unconventional reservoirs is described by peculiar complexities such as the typical low permeability to viscosity ratio and the dissolution of some gases in the oil phase. Reservoir simulations that consider these complexities negligible stand the potential of poorly characterizing the reservoir flow dynamics. The adoption of similarity transformation effectively reduces the complexities associated with the flow equations through spatial variable (r) and temporal variable (t). The Boltzmann variable $$\left(\xi =\dfrac{r}{\sqrt{t}}\right)$$ ξ = r t is introduced to facilitate the reformulation of transient two-phase flow phenomenon in a radial geometry. The technique converts the two-phase Black oil model (thus highly nonlinear partial differential equations (PDEs)) to ordinary differential equations (ODEs). The resulting ODEs present a reduced form on the flow model which is solved by finite difference approximations (the Implicit-Pressure-Explicit-Saturation (IMPES)) scheme. No loss of vital flow characteristics was observed between the Black oil model and the similarity transform flow model. Furthermore, the similarity approach facilitated the determination of pressure and saturation equations as unique functions of the Boltzmann variable. This derivation is applied to an infinitely acting reservoir where the Boltzmann variable tends to infinity ($$\xi \rightarrow \infty$$ ξ ). Finally, this case study’s analytical solution formulated critical relations for fluid flow rate and cumulative production, which are useful for single-phase flow analysis.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-parameter modeling for prediction of gas–water production in tight sandstone reservoirs;Journal of Petroleum Exploration and Production Technology;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3