Modeling the Biaxial Behavior of Concrete by Damage Mechanics with Poisson’s Ratio Variable

Author:

Smahi Rebiha1,Bouafia Youcef1,Kachi Mohand Said1

Affiliation:

1. Mouloud Mammeri de Tizi-Ozou University

Abstract

A new model is introduced, for predicting the nonlinear behavior of the concrete until the rupture. The non-linear behavior of the concrete is taken into account under monotonic load verifying the principles of the mechanics damage [1] and the concepts of the mechanics of the fracture, using the foundations of the continuum mechanics of materials [2]. The nonlinear mechanical behavior of the concrete in unidirectional is described by two laws (Sargin [3] for the compression and Grelat [4] on the tension). By introducing two variables of damage applied in unidirectional respectively in tension and in compression (Y. Bouafia , R. Smahi, and al., (2014)) [5]. Their combination with the laws of the continuum mechanics of materials (Hooke’s low generalized) [2], and the theory of the mechanics damage (theory of the isotropy of the damage, and principle of the equivalent deformation), brings us to a law of variation of the damage in three-directional applied in bidirectional. In addition, if the variation of the Poisson’s ratio of concrete in unidirectional compression has attracted the interest of several researchers we can cites: (Sami, A., Klink, 1975 [6], Murray D.W. 1979 [7], Niels Saabye ottosen, (1980) [8], Atheel E. Allos., L.H.Martin, (1981) [9], Ramtani.S, Y. Berthaud , J. Mazars, (1992) [10] and Ferretti, E., (2004) [11]. For the three-dimensional, we can mention: Chen 1982 [12], Guo 1997 [13], Zhu 1998 [14], Hyuk-Chun Noh, Hyo-Gyoung Kwak 2006 [15] and Ding Faxing Yu Zhiwu 2006 [16]. Confrontations of the calculations with experimental results (behavior of the concrete in biaxial compression and tension) have allowed to describe and to follow the real behavior of the concrete.

Publisher

Trans Tech Publications, Ltd.

Reference21 articles.

1. J. Lemaitre, J.L. Chaboche, A. Benallal, R. Desmorat, Mechanics of solid materials (Mécanique des matériaux solides), Dunod, Paris, ISBN 978- 2 -10- 051623- 0. (2009).

2. P. Royis, Mechanics of continuous environment (Mécanique des milieux continus), Presses universitaires de Lyons, ISBN 2- 7297- 0770- 0 (ISSN 1765- 6389). ( 2005).

3. M. Sargin, Stress-Strain relationship for concrete and the analysis of structural concrete sections. Solid Mechanics division (University of waterloo Canada 1971).

4. A. Grelat, Non-linear behavior and stability of reinforced concrete frames (Comportement non linéaire et stabilité des ossatures en béton armé), Annales de l'I.T.B.T.P., N° 234 (1978).

5. Y. Bouafia , R. Smahi, H. Dumontet, M. S. Kachi, (2014), Modeling the Behavior of Concrete by Damage Mechanics with a Poisson's Ratio Variable. Procedia Materials Science. Volume 3, 2014, Pages 714–719. (20th European Conference on Fracture).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3