Affiliation:
1. Silesian University of Technology
Abstract
Development of a reliable high-performance multirotor unmanned aerial vehicle (UAV) requires an accurate and practical model of the vehicle dynamics. This paper describes the process and results of the dynamic modeling of an unmanned aerial platform known as quadrotor. To model a vehicle dynamics, elementary physical and aerodynamical principles has been employed. Parameter estimations, from a UAV design have been obtained through direct and indirect measurements. In addition to standard configuration of VTOL (Vertical Take-Off and Landing) platform, the amortized landing gear, modeled as spring-damper system, has been added. The resulting model has been implemented in a simulation environment under MATLABs toolbox, SIMULINK. Some numerical results are presented to illustrate response of the open loop system to specific commands.
Publisher
Trans Tech Publications, Ltd.