Modelling and optimal control system design for quadrotor platform – an extended approach

Author:

Zawiski R.,Błachuta M.

Abstract

Abstract This article presents the development of a mathematical model of a quadrotor platform and the design of a dedicated control system based on an optimal approach. It describes consecutive steps in development of equations forming the model and including all its physical aspects without commonly used simplifications. Aerodynamic phenomena, such as Vortex Ring State or blade flapping are accounted for during the modelling process. The influence of rotors’ gyroscopic effect is exposed. The structure of a control system is described with an application of the optimal LQ regulator and an intuitive way of creating various flight trajectories. Simulation tests of the control system performance are conducted. Comparisons with models available in the literature are made. Based on above, conclusions are drawn about the level of insight necessary in creation of control-oriented and useable model of a quadrotor platform. New possibilities of designing and verifying models of quadrotor platforms are also discussed.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3