Abstract
Abstract
This article presents the development of a mathematical model of a quadrotor platform and the design of a dedicated control system based on an optimal approach. It describes consecutive steps in development of equations forming the model and including all its physical aspects without commonly used simplifications. Aerodynamic phenomena, such as Vortex Ring State or blade flapping are accounted for during the modelling process. The influence of rotors’ gyroscopic effect is exposed. The structure of a control system is described with an application of the optimal LQ regulator and an intuitive way of creating various flight trajectories. Simulation tests of the control system performance are conducted. Comparisons with models available in the literature are made. Based on above, conclusions are drawn about the level of insight necessary in creation of control-oriented and useable model of a quadrotor platform. New possibilities of designing and verifying models of quadrotor platforms are also discussed.
Subject
Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献