Deposition of YSZ Layer by PS-PVD on Different Materials

Author:

Góral Marek1,Kubaszek Tadeusz1,Poręba Marek1,Wierzbińska Małgorzata1

Affiliation:

1. Rzeszow University of Technology

Abstract

Plasma Spray Physical Vapour Deposition (PS-PVD) method was designed for production of ceramic layer on nickel superalloys. In typical process before deposition the base material is heated by plasma up to 900 °C. In present article the yttria stabilized zirconia (YSZ) was deposited on low melting point materials: 2017A-type aluminium alloy and Cu-ETP copper. The influence of power current, process time and powder feed rate on structure and thickness of obtained coatings was analysed. During first deposition process the overheating of Al-sample was observed and as result the power current was decreased to 1600 A. In the next experimental the approx. 5 mm thick dense coating was formed. During experimental processes of YSZ deposition on copper the thickness of coating increased from approx. 5 to 22 mm. The copper-oxide layer was formed under ceramic layer. The microscopic assessment showed the difficulties in formation of columnar ceramic layer on use base materials. The obtained coating was characterized by dense structure as a result of lower plasma energy during process. The increasing of power current is not possible in the case of overheating of base material.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electron-Beam Synthesis of Ceramic-Based Coatings in the Forevacuum Pressure Range;Bulletin of the Russian Academy of Sciences: Physics;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3