Author:
Cheng Zefei,Yang Jiasheng,Shao Fang,Zhong Xinghua,Zhao Huayu,Zhuang Yin,Ni Jinxing,Tao Shunyan
Abstract
The plasma spray–physical vapor deposition (PS–PVD) process has received considerable attention due to its non-line of sight deposition ability, high deposition rates, and cost efficiency. Compared with electron beam–physical vapor deposition (EB–PVD), PS–PVD can also prepare thermal barrier coatings (TBCs) with columnar microstructures. In this paper, yttria-stabilized zirconia (YSZ) coatings were fabricated by PS–PVD. Results showed that the as-deposited coating presented a typical columnar structure and was mainly composed of metastable tetragonal (t′-ZrO2) phase. With thermal exposure, the initial t′ phase of YSZ evolved gradually into monoclinic (m-ZrO2) phase. Significant increase in hardness (H) and the Young’s modulus (E) of the coating was attributed to the sintering effect of the coating during the thermal exposure, dependent on exposure temperature and time. However, the values of H and E decreased in the coatings thermally treated at 1300–1500 °C for 24 h, which is mainly affected by the formation of m-ZrO2 phase.
Funder
Science and Technology Innovation of Shanghai
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献