Analysis of the Composition and Properties of the Silicon Production Wet Cleaning Sludge to Identify Sustainable Techniques for its Processing

Author:

Tyutrin Andrey A.1,Vologin Andrey S.1

Affiliation:

1. Irkutsk National Research Technical University

Abstract

The paper is devoted to the urgent issue of processing the dust waste of metallurgical-grade silicon production, i.e. wet cleaning sludge, which contains a significant amount of valuable silica. The paper analyzes the formation of finely dispersed techno-genic materials that are generated in significant quantities (up to 120 t/d) at the Kremniy JSC. The composition and properties of the silicon production wet cleaning product have been studied. In analytical studies of the wet cleaning sludge samples, the modern certified analysis techniques have been used: laser diffraction, X-ray diffraction, and X-ray fluorescence. According to the analysis, the L:S ratio of liquid sludge is 2.1:1; after dehydration, the sludge cake has a grain size of 150 μm, with the prevailing (90 %) grain size of 59.65 μm in the test sample. The chemical composition of the sludge is 95.86 % SiO2; therefore, the wet cleaning sludge is a valuable raw material to produce metallurgical-grade silicon. Based on the analysis of the composition and properties of the silicon production wet cleaning sludge sample, we have developed a program for its processing. Sustainable sludge processing techniques are aimed at obtaining a briquetted charge, which can be used as an additive to the main raw material.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research into thickening processes of concentrates of gold-bearing ores;Proceedings of Irkutsk State Technical University;2021-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3