Research into thickening processes of concentrates of gold-bearing ores

Author:

Chernigov D. A.1,Bogorodskiy A. V.2,Nabiulin R. N.2,Mineeva T. S.3

Affiliation:

1. Irkutsk National Research Technical University; Irkutsk Research Institute оf Precious and Rare Metals and Diamonds

2. Irkutsk Research Institute оf Precious and Rare Metals and Diamonds

3. Irkutsk National Research Technical University

Abstract

The aim was to improve the thickening of an ultra-fine flotation concentrate by efficient flocculants when processing refractory sulphide gold-bearing ores from South Urals deposits. The chemical ore composition was studied using gravimetric, atomic absorption, chemical, X-ray fluorescent, assay test and electron microprobe analytical methods. Particle size analysis of the ultra-fine flotation concentrate under study was performed using a Malvern Hydro Mastersizer 2000MU analyser (Malvern Panalytical Ltd, UK). In thickening experiments, samples with the same composition after the ultra-fine grinding process were used. The gold content in the ore was determined (22.8 g/t) based on analytical studies on the material composition of samples. At least 92% of the final grain size class is -20 microns. Laboratory tests performed on eight samples containing polyacrylamide-based flocculants revealed an optimal A44 flocculant (produced in China). The flocculant meets the requirements for minimum flow rate, deposition rate and L:S ratio. The specific performance of the JX20 radial thickener (JPMFex Corp. Ltd., China) was calculated. The optimal flocculant flow rate is 200 g/t per 1 t of thickened material, leading to thickening 50 t of pulp per 1 m2 of thickener per day. The A44 flocculant is recommended for pilot testing. Thus, developing, testing and implementing fundamentally new reagents and improving existing technologies of processing gold-containing ores and concentrates are necessary to intensify the ore dewatering processes after ultra-fine grinding.

Publisher

Irkutsk National Research Technical University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3