Affiliation:
1. Ho Chi Minh City University of Food Industry
Abstract
Climate change is recognized as a global problem and even the industrial and construction sectors are trying to reduce the green-house gas emissions, especially on CO2 emissions. In Vietnam, the coal-fired thermal power plants are discharging millions of tons of CO2 and coal ash annually. This coal ash is comprised of about 80% of fly ash and the rest is bottom ash. This study would like to introduce one of the potential solutions in a carbon-constrained society that would not only manage the fly ash but also utilized this as raw material for green materials through geopolymerization. The geopolymer-based material has lower energy consumption, minimal CO2 emissions and lower production cost as it valorizes industrial waste. The fly ash containing high alumino-silicate resources from a coal-fired power plant in Vietnam was mixed with sodium silicate and sodium hydroxide solutions to obtain the geopolymeric pastes. The pastes were molded in 10x10x20cm molds and then cured at room temperature for 28 days. The 28-day geopolymer specimens were carried out to test for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). The microstructure analysis was also conducted for this eco-friendly materials using X ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), Differential Thermal Analysis - Thermal Gravimetric Analysis (DTA-TGA).
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献