Development and Characterisation of New Biocompatible Sn-Mg Lead-Free Solder

Author:

Ďurišin Martin1,Ďurišin Juraj2,Milkovič Ondrej1,Pietriková Alena2,Saksl Karel1

Affiliation:

1. Slovak Academy of Sciences

2. Technical University of Košice

Abstract

This work is focused on a development and research of a new lead-free Sn-Mg solder, alloy compatible with the human body. Tin and magnesium are biocompatible elements which do not cause an inflammation or allergic reactions with living tissues. We have prepared the Sn97Mg3 solder (wt. %) by a rapid solidification of its melt on a copper wheel (melt-spinning technique). This solder may find applications in electronic devices for intracorporeal utilisation. The microstructure of the prepared solder exhibits a heterogeneous distribution of the SnMg2 intermetallic particles within the β-Sn matrix. Structure of the solder was studied by an in-situ high energy X-ray diffraction experiment (energy of an X-ray photon: 60 keV) where 2D XRD patterns were collected from the sample in the temperature range from 298 K to 566 K. The experiment was performed at a high brilliance 3rd generation synchrotron source of radiation (PETRA III storage ring, DESY, Hamburg, Germany) at the P02 undulator beamline. From the measured X-ray diffraction data by applying the Rietveld refinement technique we have obtained thermal volume expansion data, mean positions of atoms as well as isotropic atomic displacement parameters of the constituent SnMg2 and the β-Sn crystalline phases. Thermal behaviour was studied by differential scanning calorimetry at heating rates of 5, 15, 30 and 60 K.min-1 and compared with the measured X-ray data. Our main goal lies in a preparation of a lead-free solder with fine grain structure made exclusively of biocompatible elements. We demonstrated that the rapid melt solidification technique leads to in an improvement and better thermal stability of this alloy.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3