Biomaterials Availability: Potential for Bioethanol Production

Author:

Azmi Intan Suhada1,Azizan Amizon1,Mohd Salleh Ruzitah1,Jalil Rafidah2,Zainal Mulok Tengku Elida Tengku3,Idris Nadzeerah1,Ubong Sandra1,Sihab Aimi Liyana1

Affiliation:

1. Universiti Teknologi MARA

2. Forest Research Institute Malaysia

3. UniversitiTeknologi MARA

Abstract

Over the last decade, there has been increasing research interest in the value of biosourced materials from lignocellulosic biomass. Abundant sources of lignocellulosic biomass such as palm,napiergrass,luceanatree, urban waste, municipal solid waste, agricultural waste and other waste have the potential to become a sustainable source of biofuel. In Malaysia, dissolution of cellulose from palm biomass to produce ethanol as future biofuels is very promising since palm residues from palm industry are highly abundant. In addition, cellulose contents in palm wastes or residues are relatively high for instance from empty fruit bunch or palm trunk. An efficient pretreatment is highly required prior to processes which convert the lignocellulosic palm biomass to bioethanol. The kinds of processes needed nowadays are called as green technology based techniques which are environmental friendly. Various solvents have been applied to dissolve cellulose including various types of ionic liquid as well. Previously, other method such as acid hydrolysis pretreatment process cause many drawbacks due to their low rates of hydrolysis and extreme acidic conditions. The dissolution process of the lignocellulosic biomass with ionic liquids is at its better advantage due to better dissolution as compared to by using organic or inorganic solvents. Therefore, at the moment, ionic liquid is becoming more preferable in dissolving the lignocellulosic biomass or any palm residues for instance.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3