Experimental Study on the Film Cooling Performance at the Leading Edge of Turbine Blade Using Infrared Thermography

Author:

Kim Kwang Su1,Kim Youn Jea1

Affiliation:

1. Sungkyunkwan University

Abstract

In order to protect turbine blades from high temperature, film cooling can be applied to gas turbine engine system since it can prevent corrosion and facture of material. To enhance the film cooling performance in the vicinity of the turbine blade leading edge, flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and the mainstream turbulence intensities were about 0.2%. CO2 was used as coolant to simulate the effect of coolant-tomainstream density ratio. The effect of coolant flow rates was studied for various blowing ratios of 0.5, 0.8, 1.1 and 1.4, respectively. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3