Affiliation:
1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1226
Abstract
Computations, based on the k-ω shear-stress transport (SST) turbulence model in which all conservation equations were integrated to the wall, were performed to investigate the three-dimensional flow and heat transfer about a semi-cylindrical leading edge with a flat afterbody that is cooled by film-cooling jets, injected from a plenum through three staggered rows of compound-angle holes with one row along the stagnation line and two rows along ±25 deg. Results are presented for the surface adiabatic effectiveness, normalized temperature distribution, velocity vector field, and surface pressure. These results show the interactions between the mainstream hot gas and the cooling jets, and how those interactions affect surface adiabatic effectiveness. Results also show how “hot spots” can form about the stagnation zone because of the flow induced by the cooling jets. The computed results were compared with experimental data generated under a blind test. This comparison shows the results generated to be reasonable and physically meaningful. With the SST model, the normal spreading was under predicted from 20 to 50 percent. The lateral spreading was over predicted above the surface, but under predicted on the surface. The laterally averaged surface effectiveness was well predicted.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献