Bacterial Biofilm Development on Polyethylene with Organic and Inorganic Reagents In Vitro

Author:

Li Hong Mei1,Li Huan Xin2,Zhao Wei Guo1,Zhang Wei2,Ji Jun Hui2

Affiliation:

1. PLA

2. Chinese Academy of Science

Abstract

The antimicrobial efficacy of polyethylene (PE) with organic antibacterial agent and inorganic antibacterial agent were evaluated in this work. Moreover, inhibition to bacterial biofilm on their surfaces was investigated in detail. Our experimental results showed that both modified PE samples exhibited excellent antimicrobial performances against S. aureus and E. coli with low cell suspension. When cell suspension increased up to109 cell/ml, a large amount of bacteria (S. aureus and E. coli) and extracellular polysaccharide matrix adhered to the untreated PE and PE with inorganic antibacterial agent. On the other hand, adhesion, colonization and biofilm of S. aureus did not occur on PE with organic antibacterial agent, and a little E. coli survived on its surface. It was demonstrated that organic antibacterial agent had better ability to inhibit bacteria propagation than the inorganic one in initial time, and thus it prevented adherent bacteria to develop biofilm on the surface. The difference was derived from different initial effect time of them against bacteria. Therefore, it was a better approach to prevent catheter-related infections through addition of organic reagent into bulk material.

Publisher

Trans Tech Publications, Ltd.

Subject

Biomedical Engineering,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3