Research on Wrinkling Behavior in Tube Hydroforming with Axial Feeding

Author:

Hu Zhu Lin1,Yang Lian Fa2,He Yu Lin2

Affiliation:

1. Guilin University

2. Guilin University of Electronic Technology

Abstract

Tube hydroforming (THF) is one of metal forming technologies which has been widely used to manufacture complex hollow workpeices. In THF, a variety of failures may occur and one of them is wrinkling. But recent researches show that wrinkling may be used as a preforming process to improve the formability of tubes. In this paper, a new geometry-based wrinkling indicator is proposed to evaluate the wrinkling level in THF and the wrinkle evolution diagram (WED) based on the shape change of the wrinkles is presented to display the four-stage evolution of the useful wrinkles. The wrinkling levels in THF with axial feeding under various loading paths are predicted respectively via finite element simulation, the influence of loading paths on the wrinkling behavior is investigated, and the evolving stages of the useful wrinkles is revealed via the proposed WED. The results indicate that the proposed wrinkle indicator can distinctly evaluate the wrinkling level, the wrinkling level under pulsating loading path is higher than that under polygonal linear one and four-stage evolution of the useful wrinkles could be evidently demonstrated via the WED. Notation

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference12 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hysteresis in resistance isotherms as a function of moisture for porous glass with conductive nanoparticles;Functional Materials;2024-06-28

2. Tube Forming;Journal of the Japan Society for Technology of Plasticity;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3