Synthesis and Characterization of a Porous Silicon Filter with Si3N4 Whiskers

Author:

Wong-Sifuentes Milagros1,Nanko Makoto2,Lira-Olivares Joaquín1

Affiliation:

1. Simon Bolivar University

2. Nagaoka University of Technology

Abstract

Removal of fine particles from some gas-product effluents from motors and industries, using filters, is an important subject in the field of public health and environment. In the present work, a porous silicon filter was produced, which is able to capture most of the particles undesirable for the environment (transported by gases), larger than the pore diameter (micrometer) of the filter and even smaller size particles. The development of whiskers inside of the pores of the silicon filter, improve its ability to catch smaller particles than the filter’s size pores. Those whiskers are made of Silicon Nitride, produced by a Nitridation process. A different time-temperature schedule for the formation of -silicon nitride (-Si3N4) whiskers by direct Nitridation of the porous silicon filter was studied, in order to optimize the amount of whiskers and improve the filter quality. Four different temperatures (1000, 1100, 1200 and 1300 °C) were selected, each with two different holding times (15 min and 1 hour) for complete Nitridation with N2 and N2+H2 gases. The as-formed whiskers were characterized by SEM, XRD techniques and the process conditions were studied. The filter with the Si3N4 whiskers was characterized evaluating mechanical properties of the porous silicon filter (Micro Hardness and Young Modulus). The permeability measurements were made before and after the Nitridation process. Analysis indicates that the higher Si3N4 whiskers formation temperature was 1300 °C for the gas (N2+H2) phase reaction results from the lower PSiO2/Psio ratio in the Si-N system. Titanium (99% pure) was used with the purpose of reduction of the oxygen partial pressure and the increase of the amount of -silicon nitride whiskers. The porous silicon filter improved its conditions with the silicon nitride whiskers, even though decreases also the fluid permeability measurement. However, it has a smaller flow decrement than filters with smaller porosity. The mechanical properties did not have variation at all, the porosity size increased because of the diffusion of Si to form whiskers in the Nitridation process.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3