Effect of Cavitation Number on the Improvement of Fatigue Strength of Carburized Steel Using Cavitation Shotless Peening

Author:

Macodiyo D.O.1,Soyama H.,Saka Masumi1

Affiliation:

1. Tohoku University

Abstract

Peening can be used to produce a layer of compressive residual stress at the surface of components which are subject to fatigue or stress corrosion, thereby retarding crack initiation and/or impeding the development of new cracks and hence improving their fatigue life. We have developed a new peening method, Cavitation Shotless Peening (CSP), which makes use of cavitation impacts induced by the collapse of the cavitation bubbles to produce compressive residual stress and work hardening on the material surface. CSP is a surface enhancement technique which differs with shot peening in that shots are not used. CSP uses a submerged high-speed water jet with cavitation, herein referred to as a cavitating jet, whose intensity and occurring region can be controlled by parameters such as upstream pressure and nozzle size. Cavitation number , which is defined by the ratio of upstream pressure to downstream pressure, is the main parameter of the cavitating jet. In this paper, the pit distribution on the specimen was observed with cavitating numbers  = 0.0057 and  = 0.0142. The improvement of fatigue strength and introduction of residual stress were investigated for both conditions using carburized alloy steel (JIS SCM415). It was evident from a comparison between non-peened and cavitation shotless peened specimens that the cavitation number has influence on the fatigue strength of metallic materials. Comparison of shot peened and CSP specimens has also been discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3