Pattern Classification of Acoustic Emission Signals during Wood Drying by Principal Component Analysis and Artificial Neural Network

Author:

Kim Ki Bok1,Kang Ho Yang,Yoon Dong Jin2,Choi Man Yong1

Affiliation:

1. Korea Research Institute of Science and Standards

2. Korea Research Institute of Standards and Science

Abstract

This study was performed to classify the acoustic emission (AE) signal due to surface check and water movement of the flat-sawn boards of oak (Quercus Variablilis) during drying using the principle component analysis (PCA) and artificial neural network (ANN). To reduce the multicollinearity among AE parameters such as peak amplitude, ring-down count, event duration, ring-down count divided by event duration, energy, rise time, and peak amplitude divided by rise time and to extract the significant AE parameters, correlation analysis was performed. Over 96 % of the variance of AE parameters could be accounted for by the first and second principal components. An ANN was successfully used to classify the AE signals into two patterns. The ANN classifier based on PCA appeared to be a promising tool to classify the AE signals from wood drying.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference14 articles.

1. M. Noguchi, Y. Kagawa and J. Katagiri: Mokuzai Gakkaishi Vol. 26 (9) (1980), p.637.

2. M. Noguchi, S. Okomura and S. Kawamoto: Mokuzai Gakkaishi Vol. 31 (3) (1985), p.171.

3. C. Skaar, W. Simpson and R.M. Honeycutt: Forest Products Journal Vol. 30 (2) (1980), p.21.

4. R.M. Honeycutt, C. Skaar and W. Simpson: Forest Products Journal Vol. 35 (1) (1985), p.48.

5. S. Ogino, K. Kaino and M. Suzuki: J. of Acoustic Emission Vol. 5 (2) (1986), p.61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3