Automatic Crack Classification by Exploiting Statistical Event Descriptors for Deep Learning

Author:

Siracusano GiulioORCID,Garescì Francesca,Finocchio GiovanniORCID,Tomasello Riccardo,Lamonaca FrancescoORCID,Scuro CarmeloORCID,Carpentieri Mario,Chiappini Massimo,La Corte AurelioORCID

Abstract

In modern building infrastructures, the chance to devise adaptive and unsupervised data-driven structural health monitoring (SHM) systems is gaining in popularity. This is due to the large availability of big data from low-cost sensors with communication capabilities and advanced modeling tools such as deep learning. A promising method suitable for smart SHM is the analysis of acoustic emissions (AEs), i.e., ultrasonic waves generated by internal ruptures of the concrete when it is stressed. The advantage in respect to traditional ultrasonic measurement methods is the absence of the emitter and the suitability to implement continuous monitoring. The main purpose of this paper is to combine deep neural networks with bidirectional long short term memory and advanced statistical analysis involving instantaneous frequency and spectral kurtosis to develop an accurate classification tool for tensile, shear and mixed modes originated from AE events (cracks). We investigated effective event descriptors to capture the unique characteristics from the different types of modes. Tests on experimental results confirm that this method achieves promising classification among different crack events and can impact on the design of the future of SHM technologies. This approach is effective to classify incipient damages with 92% of accuracy, which is advantageous to plan maintenance.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Power Quality Event Classifier Based on Convolutional Neural Network;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Synergizing Measurement Science and Artificial Intelligence in Smart Agriculture;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. Characterizing fatigue damage evolution in asphalt mixtures using acoustic emission and Gaussian mixture model analysis;Construction and Building Materials;2023-12

4. Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends;Sensors;2023-10-30

5. Wireless Crack Detection System Based on IoT and Acoustic Emission;2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3