Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends

Author:

Jia Jing1ORCID,Li Ying1

Affiliation:

1. Department of Civil Engineering, College of Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Environmental effects may lead to cracking, stiffness loss, brace damage, and other damages in bridges, frame structures, buildings, etc. Structural Health Monitoring (SHM) technology could prevent catastrophic events by detecting damage early. In recent years, Deep Learning (DL) has developed rapidly and has been applied to SHM to detect, localize, and evaluate diverse damages through efficient feature extraction. This paper analyzes 337 articles through a systematic literature review to investigate the application of DL for SHM in the operation and maintenance phase of facilities from three perspectives: data, DL algorithms, and applications. Firstly, the data types in SHM and the corresponding collection methods are summarized and analyzed. The most common data types are vibration signals and images, accounting for 80% of the literature studied. Secondly, the popular DL algorithm types and application areas are reviewed, of which CNN accounts for 60%. Then, this article carefully analyzes the specific functions of DL application for SHM based on the facility’s characteristics. The most scrutinized study focused on cracks, accounting for 30 percent of research papers. Finally, challenges and trends in applying DL for SHM are discussed. Among the trends, the Structural Health Monitoring Digital Twin (SHMDT) model framework is suggested in response to the trend of strong coupling between SHM technology and Digital Twin (DT), which can advance the digitalization, visualization, and intelligent management of SHM.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3