Environmental Phase Stability of Next Generation Ceramic Composite for Hip Prostheses

Author:

Pezzotti Giuseppe1

Affiliation:

1. Kyoto Institute of Technology

Abstract

A hip-joint femoral head, made of alumina matrix composite, has been evaluated with respect to its surface degradation upon increasing elongation time in water vapor environment. A microscopic evaluation of surface degradation phenomena was obtained according to laser microprobe Raman and fluorescence spectroscopies. According to a confocal configuration of the optical probe, the spectroscopic assessments were performed in volumes limited to the very neighborhood of the material surface, thus minimizing the effect of the sub-surface, which was less affected by environmental degradation. Two main features were observed: (i) significant transformation of zirconia occurred in moist environment from the tetragonal to the monoclinic polymorph; such an environmentally induced phase transformation, conspicuously increased the fraction of monoclinic polymorph (i.e., ≅ 18 vol.% in average) already present in the as-received femoral head; (ii) the equilibrium residual stress field stored at the joint surface changed from a tensile field in the as-received material to a slightly compressive stress field after several hours aging in moist atmosphere and, after exposures >50 h to an increasingly tensile stress state. A residual stress field of tensile nature in the joint surface may trigger wear degradation in the femoral head in presence of microscopic (local) weight impingements due to micro-separation and third-body wear phenomena.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3